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Abstract. The formalism of graded Poisson-Sigma models allows the construction of N = (2, 2) dilaton
supergravity in terms of a minimal number of fields. For the gauged chiral U(1) symmetry the full action,
involving all fermionic contributions, is derived. The twisted chiral case follows by simple redefinition
of fields. The equivalence of our approach to the standard second order one in terms of superfields is
presented, although for the latter so far only the bosonic part of the action seems to have been available in
the literature. It is shown how ungauged models can be obtained in a systematic way and some relations
to relevant literature in superstring theory are discussed.

1 Introduction

Motivated mainly by (super-)string theory different ver-
sions of N = (2, 2) supergravity in two dimensions [1, 2]
have been studied extensively in superspace [3–9] some
time ago. They also include extensions to dilaton the-
ory [10]. Actual applications to string theory can be found
more recently in [11–13]. A common drawback of these ap-
proaches is the extremely involved formulation, when the
full machinery of (dilaton-) superfields is deployed. For
this reason the results for component expansions obtained
so far almost exclusively are restricted to the bosonic part
of those theories.

On the other hand, already in bosonic D = 2 dilaton
gravity the systematic use of Cartan variables in a “tem-
poral” gauge [14–17] and the subsequent realization that
essentially all general dilaton theories in two dimensions
can be interpreted as a special case of a Poisson-Sigma
model (PSM) [18–21] have led to a considerable number
of new insights. Not only the extremely simple derivation
of the classical solutions [17], but also a background inde-
pendent quantization [16, 22, 23] has been possible. For a
comprehensive review [24] can be recommended.

The extension to graded Poisson-Sigma models
(gPSMs) has been equally successful [25–28]. As shown by
the present authors a certain subclass of gPSMs, already
identified as particularly attractive from the mathemat-
ical point of view in [29] by its dilaton-deformed super-
Poincaré algebra, could be shown to be equivalent [30] to

the most relevant subclass of 2D dilaton N = (1, 1) su-
pergravity theories as formulated a long time ago by Park
and Strominger [31]. This permitted the first complete so-
lution (including fermionic fields) and the formulation of
the superpoint particle in a gPSM background [30], as well
as a complete classification of N = (1, 1) solutions retain-
ing certain supersymmetries [32] (BPS states). In the last
reference also the problem of (non-minimal) coupling of
conformal matter to those supergravities has been solved.
Quantization following the same strategy as in the bosonic
case is possible as well [33,34]. The much richer structure
of extended supergravities, encountered already in previ-
ous work on this subject [1–13], strongly motivates the
application of gPSM technology to N = (2, 2) . As shown
in our present paper this approach indeed is very success-
ful and leads to novel insights.

In Sect. 2 we recall the main features of the gPSM for-
malism, together with the straightforward implementation
of the field content for N = (2, 2) supergravity. Among the
two U(1) symmetries the gauging of the chiral or of the
twisted chiral case appear as simple alternatives.

Guided by the success of the special “dilaton prepoten-
tial supergravity” gPSM in the treatment for N = (1, 1)
we immediately concentrate on that in Sect. 3—not pur-
suing the involved elimination process employed for N =
(1, 1) [29]. Indeed already that subclass of N = (2, 2)
gPSMs is eventually found to be equivalent to the one
proposed previously in the superfield approach [10].
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Section 4 is devoted to the derivation of the Poisson
tensor for generalized chiralN = (2, 2) gPSM supergravity
whereas in Sect. 5 we show how to reduce the twisted
chiral case to the one of the previous section by simple
redefinition of fields (mirror symmetry).

In Sect. 6 we first present the complete N = (2, 2)
supergravity action, involving all fermionic contributions
for the chiral case, with the twisted chiral one to be ob-
tained in an analogous fashion (Sect. 6.1). Finally the
equivalence to the results obtained in the superfield for-
mulation [10], where a second order action is used, is the
subject of Sect. 6.2.

In Sect. 7 we study the formulation of ungauged su-
pergravity in terms of gPSMs. Some models are derived
explicitely, however interesting questions about the inter-
pretation of the results cannot be anwered conclusively as
yet.

A summary of our results, their relation to previous
ones in different approaches and an outlook concerning
some obvious further applications are contained in Sect. 8.
In Appendix Appendix A: we define our notations.

2 gPSM for N = (2, 2) supergravity

A general gPSM consists of scalar fields XI(x), which
themselves are coordinates of a graded Poisson manifold
with Poisson tensor P IJ(X) = (−1)IJ+1P JI(X). The in-
dex I, in the generic case, includes commuting as well
as anti-commuting fields1. In addition one introduces the
gauge potential A = dXIAI = dXIAmI(x) dxm, a one
form with respect to the Poisson structure as well as with
respect to the 2d worldsheet coordinates. The gPSM ac-
tion reads2

SgPSM =
∫

M

dXI ∧AI +
1
2
P IJAJ ∧AI

=
∫
e
(
∂0X

IA1I − ∂1X
IA0I + P IJA0JA1I

)
d2x .

(1)

The Poisson tensor P IJ must have vanishing Nijenhuis
tensor (obey a Jacobi-type identity with respect to the
Schouten bracket related as {XI , XJ} = P IJ to the Pois-
son tensor)

JIJK = P IL∂LP
JK + g-perm (IJK) = 0 , (2)

where the sum runs over the graded permutations. The
variation of AI and XI in (1) yields the gPSM field equa-
tions

dXI + P IJAJ = 0 , (3)

1 The usage of different indices as well as other features of our
notation are explained in Appendix Appendix A:. For further
details one should consult [28,35].

2 If the multiplication of forms is evident in what follows, the
wedge symbol will be omitted.

dAI +
1
2
(∂IP

JK)AKAJ = 0 . (4)

Due to (2) the action (1) is invariant under the symmetry
transformations

δXI = P IJεJ , δAI = −dεI −
(
∂IP

JK
)
εK AJ , (5)

where the term dεI in the second of these equations pro-
vides the justification for calling AI “gauge fields”.

For a generic (g)PSM the commutator of two transfor-
mations (5) is a symmetry modulo the equations of motion
(e.o.m.-s) in (3) only:

[δε1 , δε2 ]X
I = δε3X

I (6)

[δε1 , δε2 ]AI = δε3AI

+
(
dXJ + P JKAK

)
∂J∂IP

RSε1 Sε2 R

(7)

Here ε3 is the new symmetry parameter

ε3 I = ∂IP
JKε1 Kε2 J +P JK

(
ε1 K∂Jε2 I−ε2 K∂Jε1 I

)
(8)

and from this equation it is seen that a generic gPSM
obeys a non-linear algebra with structure functions
∂IP

JK .
Only for P IJ linear in XI a closed Lie algebra is ob-

tained, and (2) reduces to the Jacobi identity for the struc-
ture constants of a Lie group. If the Poisson tensor has a
non-vanishing kernel there exist (one or more) Casimir
functions C(X) obeying

{XI , C} = P IJ ∂C

∂XJ
= 0 , (9)

which, when the XI obey the field equations of motion,
are constants of motion.

In an abstract mathematical sense a gPSM is fully de-
termined by the choice of its target space, i.e. the number
of (bosonic and fermionic) target space variables and the
number of (bosonic and fermionic) Casimirs. This state-
ment is equivalent to the (local) existence of Casimir-
Darboux coordinates. The situation in an application to
(super-) gravity is less trivial: Here we need additional
structure (a line-element or a point-particle) and global
aspects with respect to that structure become relevant.
Thus we cannot avoid solving the non-linear identity (2)
for a particular Poisson tensor, which describes (super-
)gravity in an explicit manner. A possible way to imple-
ment such a constraint in purely bosonic gravity consists
in choosing the target-space variables

Xi = (Xφ, Xa) = (φ,Xa) (10)

and the gauge fields

Ai = (Aφ, Aa) = (ω, ea) (11)

as the pairs dilaton/spin-connection and auxiliary-vector/
zweibein (for a discussion of possible generalizations see
[36]). Local Lorentz invariance then fixes the component

P aφ = Xbεb
a (12)
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of the Poisson tensor and the line element follows from
the definition of a symmetric structure ηab. This concept
straightforwardly generalizes to N = (1, 1) supergravity
[28,29]: one adds a pair of Majorana spinors (dilatino and
gravitino) Xα = χα and Aα = ψα to the target space
variables and gauge fields resp. and one demands

Pαφ = −1
2
χβγ∗β

α . (13)

The limit of rigid supersymmetry in the flat space con-
strains the value of the purely fermionic part of the Pois-
son tensor:

Pαβ = −2iXcγαβ
c + terms ∝ γ∗ (14)

A more detailed implementation of this constraint, es-
pecially taking care of eventual singularities at Y =
XaXa/2 = 0, has been discussed in [29].

Prepared with this knowledge about simpler models
we can outline the principle steps that lead to a gPSM
formulation of N = (2, 2) supergravity:

Choice of the target space: First of all we have to deter-
mine the number of fields of our theory or, equivalently,
the number of (local) gPSM symmetries. Certainly the
bosonic variables must include φ and Xa from (10).
As we are dealing with two supersymmetries, we need
two pairs of Majorana dilatini (χ1

α, χ
2
α) and gravitini

(ψ1
α, ψ

2
α) which we combine to complex Dirac spinors:

χα =
1√
2
(χ1

α − iχ2
α) ψα =

1√
2
(ψ1

α + iψ2
α) (15)

In addition, the N = (2, 2) super-algebra has an in-
ternal U(1)V × U(1)A symmetry and none [11], one
or both of these U(1) factors can be gauged [1]. Of
course, each gauged U(1) leads to an additional scalar
field, appearing as target-space variable of the gPSM.
Most intuitive is the choice of one gauged U(1): Beside
the fields Xa and ω, which are eliminated to obtain
a second order formulation (cf. 6.2), the target space
variables then describe the field content of a N = (2, 2)
matter multiplet, while the gauge fields can be viewed
as the components of the N = (2, 2) multiplet com-
prising the zweibein ea. Thus we concentrate on that
case, which in addition has several advantages: In con-
trast to the case of two gauged U(1) factors, this is an
irreducible representation of supersymmetry3. On the
other hand, the gauging of one factor reduces the num-
ber of invariant terms in the Poisson tensor which sim-
plifies the highly non-trivial step of finding a solution
to the condition (2). Finally, the dilaton supergravity
formulated previously [10] deals with one gauged U(1)
as well and thus this choice will allow a comparison
with that work.
Therefore, an additional pair of bosonic variables
(π,B) is added to the target-space and the gauge-fields

3 Certainly this is not independent of the observation that
the gPSM fields fit into N = (2, 2) multiplets.

resp., which leads to the final set of fields

XI = (φ, π,Xa, χα, χ̄α) , AI = (ω,B, ea, ψα, ψ̄α) .
(16)

Symmetry constraints: The invariance with respect to lo-
cal Lorentz and B-gauge symmetry are fully deter-
mined by the underlying super-algebra. Local Lorentz
invariance fixes the P Iφ components to

P aφ = Xbεb
a , Pπφ = 0 , (17)

Pαφ = −1
2
χβγ∗β

α , P ᾱφ = −1
2
χ̄βγ∗β

α , (18)

in order to create the appropriate covariant derivatives
(cf. (22)-(24) below).
To determine the P Iπ components, a specific choice of
gauging must be made. We first concentrate on chiral
supergravity (gauged U(1)V ), which implies the choice

P aπ = 0, Pαπ = − i
2
χβγ∗β

α , P ᾱπ =
i

2
χ̄βγ∗β

α .

(19)

In Sect. 5 we will show how one obtains other gaugings
from this specific result. Also the ungauged theory can
be considered as a restricted version (Sect. 7). Finally
we implement local supersymmetry in analogy to (14)

Pαβ̄ = −2iXcγαβ
c + terms ∝ γ∗ . (20)

Rigid supersymmetry: With the result obtained so far the
action of an N = (2, 2) gPSM may be written as

S =
∫

M

(
φdω + π dB +XaDea + χαDψα

+ χ̄αDψ̄α + iXa(ψγaψ̄) +
1
2
P̂ABABAA

)
,

(21)

where P̂AB is the A = (a, α, ᾱ) part of the Poisson ten-
sor without the specific contribution of (20). Setting
P̂AB = 0 it is found that the remaining components
with the covariant derivatives

Dea = dea + ωεa
beb , (22)

Dψα = dψα − 1
2
(ω + iB)γ∗α

βψβ , (23)

Dψ̄α = dψ̄α − 1
2
(ω − iB)γ∗α

βψ̄β (24)

obey (2) and thus are a gPSM. As may be checked
straightforwardly, the structure functions in (8) of this
Poisson tensor exactly yield rigid N = (2, 2) super-
symmetry on flat space including the U(1)V factor of
the internal symmetry group. This is an important
consistency check of the setup discussed so far. The
necessary step to be performed in the next section
consists in finding a Poisson tensor with non-trivial
bosonic potential P ab and thus referring to a theory of
supergravity.
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3 N = (2, 2) dilaton prepotential
supergravity

To find supergravity models with non-trivial bosonic po-
tential we could perform similar steps as in [28]: Those
components not yet fixed by (17)-(20) can be expanded in
terms of Lorentz andB-gauge invariant functions and then
the non-linear Jacobi identity (2) is solved order by order
in the fermions χα. But, first, it is already known from the
N = (1, 1) case that the solution will not be unique for a
given bosonic potential and, second, the expansion shows
that the complexity of this task is most likely almost un-
manageable. Fortunately, a different route suggests itself
from the results of the N = (1, 1) theories [29, 30]: The
identity (2) is solved for a very special (simple) model
only, more complicated theories are found by means of
target space diffeomorphisms [28] that respect the con-
straints (17)-(20), especially conformal transformations.

As a simplified theory the N = (2, 2) version of the
model considered in [26] is chosen, cf. also Sects. (5.4) and
(7.4) of [28] as well as [29,30]. The idea is to minimize in a
first step the contributions to torsion, in other words the
dependence on Xa. Thus it is demanded that the Pois-
son tensor is independent of Xa except for the minimal
contributions in (17) and (20). Then the expansion of the
bosonic potential P ab = εabV reduces to

V = v +
1
2
χ2v2 +

1
2
χ̄2v̄2 +

1
4
χ2χ̄2v4 , (25)

where the remaining functions depend on φ and π only.
For convenience we introduce the notation X = φ + iπ
and thus v = v(X, X̄) etc.4 In the mixed component of
the Poisson tensor

P aα = F a
Sχ

α + F a
P (χγ∗)α + F ab(χ̄γb)α (26)

F a
S and F a

P include contributions proportional to χγaχ̄
and χγaγ∗χ̄ only, which by means of Fierz identities can
be transformed into contributions that already appear in
F ab. Therefore, (26) reduces to

P aα = F ab(χ̄γb)α = (F(s)η
ab + F(a)ε

ab)(χ̄γb)α , (27)

F(s) = f(s) +
1
2
χ2f̃(s) , F(a) = f(a) +

1
2
χ2f̃(a) . (28)

According to our conventions P aᾱ = −(P aα)∗. Finally, the
purely fermionic terms must be considered. Pαβ̄ for chiral
gaugings of U(1) has no invariant term proportional to γ∗,
while Pαβ = Uγ∗αβ with

U = u+
1
2
χ2u2 +

1
2
χ̄2ũ2 +

1
4
χ2χ̄2u4 . (29)

Notice that ũ2 need not be the complex conjugate of u2.

4 Of course, the action of chiral supergravity is most con-
veniently written in terms of a complex scalar field X and a
complex gauge field ω+iB. However, we keep ω and B separate
to simplify the generalization to different gaugings.

The implementation of the condition JIJK = 0 in
(2) is a straightforward, but still tedious calculation. All
identities with at least one φ or π are taken into ac-
count by the invariant expansions; identities with an odd
number of bosonic indices contribute to even (zero, two,
four) degrees in the number of fermions, the other ones
to odd (one, three) degrees. We introduce the notation
f(φ, π)′ = ∂f(φ, π)/∂φ and ḟ(φ, π) = ∂f(φ, π)/∂π. The
results of that calculation can be summarized as follows:

order zero: Jabc = 0 is the purely bosonic identity and
automatically satisfied.
Jaαβ = 0 relates P aα to Pαβ :

f(s) =
i

4
u′ , f(a) = 0 . (30)

Jaαβ̄ = 0 expresses the bosonic potential v in terms of
u, which by

v = −1
8
(ūu)′ (31)

defines it to be a prepotential.
order one: The χ̄ contribution from Jabα yields

v̄2 =
1
8
u′′ . (32)

The χ contribution of Jabα as well as Jαβγ̄ constrain
the dependence of the prepotential on φ and π:

u = u(φ+ iπ) = u(X) (33)

Finally, we obtain from Jαβγ = 0 that u2 = ũ2 = 0.
order two: Jabc = 0 is again trivial, while Jaαβ and Jaαβ̄

set the higher order contributions of P aα to zero: f̃(s) =
f̃(a) = 0.

orders three and four: The remaining identities are now
almost trivial. Jabc has one non-vanishing term of or-
der three, which tells us that v4 = 0. Similarly one
gets from Jαβγ̄ that u4 = 0. All remaining identities
are then automatically satisfied.

Putting the pieces together, the Poisson tensor apart
from the components in (17)-(19) becomes

P ab = εab
(−1

8
(ūu)′ +

1
16
ū′′χ2 +

1
16
u′′χ̄2) , (34)

P aα =
i

4
u′(χ̄γa)α , P aᾱ =

i

4
ū′(χγa)α , (35)

Pαβ̄ = −2iXa(γa)αβ , (36)

Pαβ = uγ∗αβ , P ᾱβ̄ = ūγ∗ᾱβ̄ . (37)

The similarity of this tensor to the related model withN =
(1, 1) supersymmetry [cf. (5.34)–(5.36) in [28]] is obvious.

As mentioned already in Sect. 2 the knowledge of even-
tual Casimir functions (9) is very important. In case of
bosonic gravity or N = (1, 1) supergravity, the bosonic
part of the Poisson tensor has odd dimension and thus
there exists at least one Casimir function. Here the bosonic
part has even dimension, but the symmetry constraints
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imply that it can never have full rank. Thus there exist
at least two Casimirs. One of them can be chosen as the
N = (2, 2) extension of the one present in any PSM grav-
ity model:

C = 8Y − ūu+
1
2
χ2ū′ +

1
2
χ̄2u′ (38)

The second one is related to the new gauge symmetry.
As all bosonic fields are singlets under the B-gauge trans-
formation its body is simply π. Indeed, a straightforward
calculation shows that

Cπ = π +
iū

4C
χ2 − iu

4C
χ̄2 − 1

C
Xa(χγaγ∗χ̄) (39)

commutes in the sense of (9) with all target space vari-
ables. For ground-state configurations (C = 0 in (38),
cf. [32]) with non-vanishing fermion fields the form (39)
of the second Casimir function needs not be well defined.
This problem finds a resolution within the study of the
integrability of the theory [37]. In certain cases additional
(fermionic or bosonic) Casimir functions can appear (for
N = (1, 1) cf. [28]).

4 General chiral supergravity

For many applications the model (34)-(37) is not yet gen-
eral enough, as its bosonic potential v has been restricted
to be independent of Y . In the case of N = (1, 1) super-
gravity the present authors have found [29, 30] that all
“genuine” supergravities—i.e. gPSM theories which obey
symmetry restrictions as pointed out in Sect. 2—are ob-
tained from a model of the type (34)-(37) by the use of
a field-dependent conformal transformation. This concept
requires a generalization in the present case, as the theory
depends on a complex scalar X instead of the real dilaton
φ. Thus, we are looking for a target space diffeomorphism
(cf. [28])

XI =⇒ X̂I = X̂I(X, X̄) = X̂I(φ, π) , (40)

which yields new gauge potentials and a new Poisson ten-
sor

ÂI =
∂XJ

∂X̂I
AJ ,

P̂ IJ = (−1)K(I+1)(∂KX̂
I)PKL(∂LX̂

J) ,
(41)

but leaves the symmetry constraints (17)-(20) invariant.
We do not intend to solve this constraint in full generality,
but use the result from [29], namely that these target space
diffeomorphisms can be interpreted as conformal transfor-
mations.

Consider a generalized conformal transformation that
depends on a generic complex function of Q(ϕ, π). From
the constraints that Xa is a real field the transformation
must be of the form

X̂ = X , X̂a = e−(Q+Q̄)/4Xa , (42)

χ̂α = e−Q̄/4χα , ˆ̄χα = e−Q/4χ̄α . (43)

This transformation leaves the components (17)-(19) in-
variant, while P̂αβ̄ in terms of the fields without hats be-
comes

P̂αβ̄ = e−(Q+Q̄)/4Pαβ̄

+
1
16
e−(Q+Q̄)/4

(
(χ̄χγ∗αβ − χ̄γ∗χεαβ)(Q′ + Q̄′ + iQ̇− i ˙̄Q)

− χ̄γaχ(γ∗γa)αβ(Q′ − Q̄′ + iQ̇+ i ˙̄Q)
)
. (44)

Clearly the last line has to vanish if local supersymmetry
shall still be implemented by (20). The possible solutions
are Q(φ+ iπ) analytic, Q(φ) real or Q(π) imaginary. The
first possibility has an analogue in superspace formulation
of chiral N = (2, 2) supergravity [1]: infinitesimal super-
Weyl transformations preserving the constraints may be
written as

EM
a δEb

M = δb
a(Λ+ Λ̄) , EM

α δEβ
M = δβ

αΛ̄ , (45)

EM
a δEβ̄

M = iγβγ
a DγΛ , (46)

with a chiral transformation parameter Λ. Therefore, in
the superspace formulation the gravitino—the lowest com-
ponent of Eα

m—transforms with a function that depends
on the anti-chiral field Φ̄ = φ − iπ + . . .. The remaining
two possibilities have no obvious analogue in superspace,
but real Q(φ) nonetheless is reminiscent of the case of
non-minimally gauged supergravity [(28) in [1]].

To follow as close as possible the philosophy of the su-
perspace formulation Q(X) is chosen as an analytic func-
tion in X, the remaining possibilities are certainly inter-
esting but we leave their investigation for future work.
This choice in turn implies by (41) with Z = Q′

ω̂ = ω +
1
4
(
(Z + Z̄)Xbeb + Z̄χψ + Zχ̄ψ̄

)
, (47)

B̂ = B − i

4
(Z̄χψ − Zχ̄ψ̄) , (48)

êa = e(Q+Q̄)/4ea , ψ̂α = eQ̄/4ψα , ˆ̄ψα = eQ/4ψ̄α .

(49)

It is now straightforward to derive the new Poisson tensor
in terms of the variables X̂I . By doing this it is found that
the prepotential u(X) transforms as

û = e−Q̄/2u , ˙̂u = i(û′ + Z̄û) (50)

and thus û no longer represents an analytic function.
To economize writing we drop the hats for the fields

of the generalized Poisson tensor in the following and in
addition introduce the new functions

w(X) =
1
4
eQ̄/2u , W (X, X̄) = −2ww̄ . (51)

With (41) the generalized Poisson tensor becomes

P ab = εab
(
e−(Q+Q̄)/2W ′ +

1
2
Y (Z + Z̄)

+
1
4
χ2e−Q/2w̄′′ +

1
4
χ̄2e−Q̄/2w′′

)
,

(52)
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P aα = ie−Q̄/2w′(χ̄γa)α − Z̄

4
Xb(χγbγ

aγ∗)α , (53)

P aᾱ = ie−Q/2w̄′(χγa)α − Z

4
Xb(χ̄γbγ

aγ∗)α , (54)

Pαβ̄ = −2iXa(γa)αβ , (55)

Pαβ =
(
u+

Z̄

4
χ2
)
γ∗αβ , P ᾱβ̄ =

(
ū+

Z

4
χ̄2
)
γ∗αβ ,

(56)

yielding the Casimir functions (38) and (39) from (42) and
(43)

C = 8
(
W + e(Q+Q̄)/2(Y

+
1
4
χ2e−Q/2w̄′ +

1
4
χ̄2e−Q̄/2w′)

)
,

(57)

Cπ = π + ieQ̄/2 w̄

C
χ2 − ieQ/2w

C
χ̄2

− e(Q+Q̄)/2

C
Xa(χγaγ∗χ̄) .

(58)

5 Twisted-chiral supergravity

To find other types of gaugings of the internal U(1)V ×
U(1)A symmetries the restrictions on allowed target-space
diffeomorphisms is partially relaxed: We still insist that
(17), (18), (20) and the first equation of (19) remain un-
changed, but we allow changes in the second and third
equation of (19). Nevertheless, we have to assume that
the Pαπ and P ᾱπ components define sensible covariant
derivatives, i.e. they remain functions of χα and χ̄α alone.
From the covariant derivatives of ψα in chiral spinor com-
ponents

(Dψ)+ =
(

d−1
2
(ω + iB)

)
ψ+ , (59)

(Dψ)− =
(

d+
1
2
(ω + iB)

)
ψ− (60)

and their hermitian conjugates the remaining transforma-
tions are obtained by the simple exchange

χ+ ←→ χ̄+ , ψ+ ←→ ψ̄+ (61)

and

χ− ←→ χ̄− , ψ− ←→ ψ̄− . (62)

The combination of the two is obviously trivial, apply-
ing one of them yields the twisted chiral gauging. Notice
that the supersymmetry transformation Xa(ψ ∧ γaψ) is
invariant under (61) and/or (62).

In principle, all formulae of the previous Sections can
be taken over together with the replacements χ− ↔ χ̄−
and ψ− ↔ ψ̄− to describe the twisted-chiral version of
supergravity. However, some expressions become rather

lengthy. The twisted-chiral analogue of the Poisson tensor
(19) and (52)-(56) turns out to be

P aπ = 0 , Pαπ = − i
2
χα , P ᾱπ =

i

2
χ̄α , (63)

P ab = εab
(
e−(Q+Q̄)/2W ′ +

1
2
Y (Z + Z̄)

+
1
4
χχ̄(e−Q/2w̄′′ + e−Q̄/2w′′)

+
1
4
χγ∗χ̄(e−Q/2w̄′′ − e−Q̄/2w′′)

)
,

(64)

P aα =
i

2
(e−Q̄/2w′ + e−Q/2w̄′)(χγa)α

+
i

2
(e−Q̄/2w′ − e−Q/2w̄′)(χγaγ∗)α

− 1
8
(
(Z̄ + Z)Xbεb

a + (Z̄ − Z)Xa
)
χα

− 1
8
(
(Z̄ + Z)Xa + (Z̄ − Z)Xbεb

a
)
(χγ∗)α ,

(65)

Pαβ̄ = −2iXaγαβ
a

+
1
2

(
u+

Z̄

4
(χχ̄+ χγ∗χ̄)

)
(γ∗ − ε)αβ

+
1
2
(
ū+

Z

4
(χχ̄− χγ∗χ̄)

)
(γ∗ + ε)αβ ,

(66)

Pαβ = P ᾱβ̄ = 0 . (67)

In analogy to (53)/(54) we have also P aᾱ = −(P aα)∗. The
symbol ε in (66) is the symplectic tensor used to raise
spinor indices, (γ∗ ± ε)/2 are the (anti-)chiral projection
operators. Finally, the Casimir functions are obtained as

C = 8
(
W + e(Q+Q̄)/2(Y +

1
4
χχ̄(e−Q/2w̄′ + e−Q̄/2w′)

+
1
4
χγ∗χ̄(e−Q/2w̄′ − e−Q̄/2w′)

))
,

(68)

Cπ = π + i
χχ̄

C
(eQ̄/2w̄ − eQ/2w)

+ i
χγ∗χ̄
C

(eQ̄/2w̄ + eQ/2w)− e(Q+Q̄)/2

C
Xa(χγaχ̄) .

(69)

It is important to notice that the discrete transforma-
tions (61) always are defined globally, in contrast to the
conformal transformations considered in Sect. 4. Thus, the
chiral and twisted-chiral models are physically equivalent.
This is the well-known behavior of the geometrical (topo-
logical) sector under mirror symmetry, while propagating
matter degrees of freedom in general are not invariant.

6 Actions for gauged dilaton supergravity

Having found the explicit Poisson tensors that describe
(twisted-)chiral supergravity, we are now ready to write
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down the corresponding supergravity actions and their
symmetry transformations. Then these results are com-
pared to the models known in literature, which are formu-
lated in an (equivalent) second order derivative formula-
tion.

6.1 gPSM action and its symmetries

From (1) together with (52)-(56) the full chiral dilaton
supergravity action becomes

Sch =
∫

M

(
φdω + π dB +XaDea + χαDψα + χ̄αDψ̄α

+ ε
(1
2
Y (Z + Z̄) + e−(Q+Q̄)/2W ′

+
1
4
χ2e−Q/2w̄′′ +

1
4
χ̄2e−Q̄/2w′′)

+
Z̄

4
Xa(χγaγ

bebγ∗ψ) +
Z

4
Xa(χ̄γaγ

bebγ∗ψ̄)

− ie−Q̄/2w′(χ̄γaeaψ)− ie−Q/2w̄′(χγaeaψ̄)

+2iXaψ̄γaψ− 1
2
(u+

Z̄

4
χ2)ψγ∗ψ− 1

2
(ū+

Z

4
χ̄2)ψ̄γ∗ψ̄

)
.

(70)

The first two terms proportional ε, the two-dimensional
volume form, contain the bosonic potential. This action is
invariant under local Lorentz symmetry and B-gauge sym-
metry, which both are realized linearly according to (17)–
(19) together with (5). A special field dependent choice
of εa represents 2D diffeomorphisms, which we need not
reproduce explicitly because of the manifest deffeomor-
phism invariance of (70). More important in different ap-
plications are the supersymmetry transformations. For the
target-space variables the result

δX = χ̄γ∗ε̄ , δX̄ = χγ∗ε , (71)

δXa = −1
4
Xb
(
Z̄(χγbγ

aγ∗ε) + Z(χ̄γbγ
aγ∗ε̄)

)
+ i
(
e−Q̄/2w′(χ̄γaε) + e−Q/2w̄′(χγaε̄) ,

(72)

δχα = 2iXa(ε̄γa)α −
(
u+

Z̄

4
χ2
)

(εγa)α , (73)

δχ̄α = 2iXa(εγa)α −
(
ū+

Z

4
χ̄2
)

(ε̄γa)α , (74)

is obtained, while the expressions for the gauge fields are
more complicated:

δω =
1
4
Xb
(
Z̄ ′(χγbγ

aγ∗ε) + Z ′(χ̄γbγ
aγ∗ε̄)

)
− i((e−Q̄/2w′)′(χ̄γaε) + (e−Q/2w̄′)′(χγaε̄)

)
− (u′ +

Z̄ ′

4
χ2)ψγ∗ε−

(
ū′ +

Z ′

4
χ̄2
)
ψ̄γ∗ε̄

(75)

δB =
i

4
Xb
(
Z ′(χ̄γbγ

aγ∗ε̄)− Z̄ ′(χγbγ
aγ∗ε)

)
− i((e−Q̄/2w′)•(χ̄γaε) + (e−Q/2w̄′)•(χγaε̄)

)
− i
(
u′ + Z̄u− Z̄ ′

4
χ2
)
ψγ∗ε

− i
(
ū′ + Zū− Z ′

4
χ̄2
)
ψ̄γ∗ε̄

(76)

δea =
1
4
(
Z̄(χγaγ

bγ∗ε) + Z(χ̄γaγ
bγ∗ε̄)

)
eb

+ 2i(ψγaε̄+ ψ̄γaε)
(77)

δψα = −(Dε)α +
Z̄

4
Xa(γaγ

bγ∗ε)αeb

+ ie−Q/2w̄′(γaε̄)αea − Z̄

4
χα(ψγ∗ε)

(78)

δψ̄α = −(Dε̄)α +
Z

4
Xa(γaγ

bγ∗ε̄)αeb

+ ie−Q̄/2w′(γaε)αea − Z

4
χ̄α(ψ̄γ∗ε̄)

(79)

In the last two equations under B-gauge transformation
the symmetry parameter εα behaves as ψα (cf. (23)), ε̄α

as ψ̄α. Again the similarity of the action (70) together
with its supersymmetry transformations (75)-(79) and the
result obtained inN = (1, 1) supergravity [cf. [30] (18) and
(20)–(25)] is immediate.

Twisted-chiral supergravity follows from the field re-
flections (62). As the corresponding formulae are quite
lengthy, but can be reconstructed easily, we do not repro-
duce them here.

6.2 Relation to second-order formulation

For N = (1, 1) dilaton supergravity a very detailed study
of the relation between the gPSM-based (first-order) for-
mulation and the second order formulation from super-
space has been carried out by the present authors in [30].
Here we just want to sketch the basic steps for N = (2, 2)
supergravity that basically lead to an equivalent result.
We restrict the explicit calculations to the case of chiral
supergravity, the twisted chiral version again follows by a
simple change of variables.

To make contact with the second order formulation
of supergravity as it follows by integrating out auxiliary
fields of superspace, also our auxiliary field Xa and the
part of the spin-connection depending on bosonic torsion
must be eliminated. The necessary steps have been worked
out for N = (1, 1) supergravities in detail in [28], Sect. 6.3.
As the procedure is independent of the number of target-
space variables as well as of the details of the Poisson
tensor, all formulae can be carried over immediately to
the present application.

Variation of the action (70) with respect to Xa yields
the torsion equation and is used to eliminate the indepen-
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dent spin connection according to

ωa = em
a ωm = ω̃a − τ̃a , (80)

ω̃a = εmn∂nema − 2iεmn(ψ̄nγaψm) , (81)

τ̃a = −1
2
(∂aP̂

AB)εmneBneAm . (82)

In the last equation P̂AB are the components (52)-(54)
and (56) of the Poisson tensor without the minimal tor-
sion contribution (55), which has been included in the def-
inition of the supersymmetry covariant spin connection ω̃.
After replacing the independent spin-connection by (80)-
(82) and a subsequent partial integration, the action can
be varied with respect to Xa again. This finally allows to
eliminate that field by a purely algebraic (and even only
linear) equation:

Xa = −εan

(
∂nφ+

1
2
(χγ∗ψn) +

1
2
(χ̄γ∗ψ̄n)

)
(83)

We introduce the curvature scalar and its partners as

R̃ = 2 ∗ dω̃ , B̃ = ∗dB , (84)

σ̃α = ∗(D̃ψ)α , ˜̄σα = ∗(D̃ψ̄)α , (85)

where the covariant derivatives D̃ are defined as in (23)
and (24) with ω replaced by ω̃. After some algebra the
second-order version of the action (70) is found:

Sch =
∫

d2x e

(
1
2
R̃φ+ B̃π + χασ̃α + χ̄α ˜̄σα

− 1
2
(Z + Z̄)∂mφ∂mφ+ e−(Q+Q̄)/2W ′

+
1
4
(
χ2e−Q/2w̄′′ + χ̄2e−Q̄/2w′′)

+ iεmn
(
e−Q̄/2w′(χ̄γnψm) + e−Q/2w̄′(χγnψ̄m)

)
−
(Z

8
(
∂mφ(χγ∗ψm) + 2εmn(∂nφ)χ̄ψ̄m

− εmn(χ̄ψ̄n)(χγ∗ψm)
)

+ h. c.
)

+
1
32

(Z − Z̄)(χ2ψmψm − χ̄2ψ̄mψ̄m)

+
1
2
εmn

(
u(ψnγ∗ψm) + ū(ψ̄nγ∗ψ̄m)

)
(86)

From the results of [30] it is expected that also here this
action is —up to some field redefinitions— equivalent to
the model of [10], although in that work only the first
two lines of (86) has been worked out explicitly. This is
confirmed by several observations:

1. The bosonic potential of (86) is equivalent to the one of
[10], and both are equivalent to the bosonic potentials
of the N = (1, 1) case.

2. There exists a kinetic term for φ but not for π. As
pointed out in [30] this is a consequence of the first
order formalism in terms of a gPSM. For the same
reason, the gPSM based dilaton supergravity does not
produce a kinetic term for the dilatino. However, by
the field redefinition

ψα

m
= ψα

m −
i

8
Z̄ea

mεab(χ̄γb)α , (87)

such a term is generated. This redefinition is necessary,
as the conformal transformation (42)-(49) is not equiv-
alent to a super-Weyl transformation in superspace [1].
There beside the multiplication with the conformal fac-
tor an additional term is needed to preserve the tor-
sion constraints (cf. (45) and (46)). This generates the
kinetic term for the fermions but does not affect the
scalar fields.

If Z = 0 the kinetic term of the dilaton disappers. Such
models are related to N = (2, 2) supergravity described in
terms of a single supergravity multiplet (ea, ψα, B) [1, 2].
Indeed, on a patch with u′′ 	= 0 the dilatino χ can be
eliminated in that case as well. The resulting action

Sch =
∫

d2x e

(
1
2
R̃φ+ B̃π − 4

ū′′ σ̃
2 − 4

u′′ ˜̄σ
2 − 1

8
(ūu)′

+
1
2
(
uεmnψnγ∗ψm + ūεmnψ̄nγ∗ψ̄m

)
− 2i

( ū′

ū′′ ε
mn(σ̃γnψ̄k) +

u′

u′′ ε
mn(˜̄σγnψk)

)
+

1
4
( (u′)2

u′′ ψmγ
mγnψn +

(ū′)2

ū′′ ψ̄mγ
mγnψ̄n

))
(88)

is written in terms of zweibein, gauge-connection and a
complex gravitino. The fields φ and π are connected with
the complex auxiliary field from the superspace approach
(cf. [30] for the N = (1, 1) case).

7 Ungauged supergravity

Beside the two versions of minimally gauged N = (2, 2)
supergravity discussed so far ungauged versions have been
found in the context of superstring compactifications [11–
13]. In this section it is shown that models of this type can
be obtained in a simple way from the gPSM formulation
of the minimally gauged theories.

To formulate an ungauged model we have to get rid
of the target space variable π in the Poisson tensors of
Sects. 3 and 4. To illustrate this procedure the dilaton
prepotential supergravity is taken as an example.

It is straightforward to decouple the additional U(1)
charge by choosing the corresponding Casimir funcition as
a new coordinate replacing the coordinate π in (34)-(37).
As π appears in the prepotential u(φ+ iπ) and ū(φ− iπ)
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the relevant replacement is

u(φ+ iπ) = û+
1

4C
û′(ˆ̄uχ2 − ûχ̄2 + 4iXa(χγaγ∗χ̄)

)
+

1
16C

χ2χ̄2(û′′ +
1
C

(ûˆ̄u′ − û′ ˆ̄u)
)
,

(89)

Here, û(φ + iCπ) and ˆ̄u(φ − iCπ) are the prepotentials
after replacing π by the Casimir function Cπ. For later
convenience it is worthwhile to look at the appearance of
C inside the new prepotential more in detail. Indeed, one
has to insert this prepotential into the expression (38) to
compute the remaining conserved quantity. But then C is
seen to appear on the right hand side of that equation as
well, which could raise the question of the existence of so-
lutio ns. But this turns out to be a technical problem and
does not lead to inconsistencies: C only appears as inverse
power in expressions with fermions. By making the split
into soul and body C = CB + CS a systematic expansion
in CS can be written down and the inverse powers reduce
to expressions in CB = 8Y − ûˆ̄u. The anti-commuting
character of the spinors in CS gaurantee that this proce-
dure stops at some point. In this specific case the result
is found to be especially simple: A straig htforward calcu-
lation shows that all new contributions of order ∝ χ2χ̄2

from the expansion in CS cancel! Thus we just can replace
all Casimir functions in (89) by CB and obtain a closed,
but lenghty expression for the remaining Casimir.

Now it is straightforward to reformulate the Poisson
tensor with the new variable Cπ, which by definition has
vanishing components PCπI = {Cπ, X

I} ≡ 0. Conse-
quently its gauge potential only appears in the kinetic
term Cπ dÃπ. Once Cπ is restricted to a constant this be-
comes an irrelevant total derivative. Thus we may simply
redefine û(φ) as a complex prepotential depending on the
dilaton alone and drop all reminiscences of Cπ. The re-
maining components of the Poisson tensor still obey the
non-linear Jacobi identity (2). The ensuing gPSM action
describes an ungauged version of dilaton supergravity. It
is important to notice that the basic symmetry principles,
local Lorentz invariance encoded in PφI and local super-
symmetry transformations in Pαβ̄ remain invariant under
this change of variables.

Though the explicit calculation of the Poisson tensor is
straightforward the lenghty expressions are not very illu-
minating. Instead the expressions (34)-(37) may be used,
if the u and ū are seen as the abbreviations for (89) and
its hermitian conjugate resp. Notice that derivatives with
respect to the dilaton have to be taken inside CB as well.

We add some comments on interesting properties and
problems of this model:

1. It is important to realize that the ungauged model
is not equivalent to the (twisted-)chiral theories dis-
cussed in the previous Sections, although the Poisson
tensor of the former locally can be obtained from the
latter. There are two sources of inequivalence:
(a) The replacement of the target-space coordinate

π → Cπ is not defined globally, as can easily be

seen from (69). In particular, the ungauged model
only allows for a restricted class of solutions with
C = 0 but non-vanishing fermion fields. This could
have important physical implications as the field
configurations with C = 0 are candidates for BPS
states [32].

(b) Though PCπI ≡ 0 after the replacement π → Cπ,
the models with and without Cπ as target-space
variable are different: The former still consists of
all symplectic leaves labelled by the value of the
Casimir function Cπ, in the latter case one has to
choose a fixed value of Cπ. Despite the fact that the
specific value of Cπ is irrelevant it is obvious that
the ungauged model now only consists of exactly
one symplectic leaf of the full theory5. We refer
to the discussion of dimensionally reduced Chern-
Simons gravity [38–40] as an example of a PSM
with PY I ≡ 0 in terms of “physical” coordinates
for a specific field Y .

2. Only the dilaton prepotential supergravity has been
discussed explicitely so far. Obviously, the procedure
of decoupling π can be performed for the general model
of Sect. 4 as well. Also, the resulting models still follow
from a “conformal transformation” of the simplified
model with Z = 0: Indeed, the model with Z 	= 0 can
be obtained by “recoupling” of Cπ, a subsequent con-
formal transformation as discussed in Sect. 4 and by
decoupling Cπ again. The Casimir function Cπ, being
invariant under the transformation (42) and (43), does
not change its value during this procedure and thus we
end up in the same symplectic leaf with respect to Cπ

as we started from. Therefore, it should be possible
to circumvent the detour of gauging π again. Notice
however, that this more direct transformation cannot
be written as a function Q(φ), solely depending on the
dilaton. Rather, the analytic function Q(φ+iπ) in (42)
and (43) must be rewritten as a function independent
of π by substituting π → Cπ. Then Q will depend an
all target-space coordinates of ungauged supergravity.
Also, the identifications of the new variables according
to (42) and (43) will become much more complicated.
Alternatively, one could define conformal transforma-
tions with a real functionQ(φ) as explained below (44).

3. As in the chiral case we should address mirror symme-
try within these models. As a consequence of the ab-
sence of additional gaugings one finds that any trans-
formation of the form

χ̂+ = cosα+χ+ + sinα+χ̄+ ,

χ̂− = cosα−χ− + sinα−χ̄− (90)

leaves invariant the covariant derivatives as well as lo-
cal supersymmetry transformation. Except for the case
α± = π/4 all transformations (90) are defined globally
and have no physical influence. Standard mirror sym-
metry is defined as the discrete subgroup α = π/2. But
it may well be that for the special case of ungauged

5 Of course, both theories still consist of a foliation with re-
spect to C, which has been omitted here for simplicity.
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supergravity a generalization of type (90) exists in su-
perspace as well.

4. It remains to check whether this model indeed repro-
duces the result of [11] once the Lagrange multipli-
ers Xa and the torsion dependent part of ω are elim-
inated. As can be seen from (89) the ensuing second-
order Lagrangian is very complicated. At this point we
encounter an additional problem, which is generic for
all ungauged supergravity models obtained in this way.
Obviously the torsion equation (82) now becomes non-
polynomial in Xa due to (89) unless the prepotential is
drastically restricted such that all inverse powers of C
cancel. Therefore the ungauged version of supergravity
presented so far will depend in a non-polynmial way
on ∂mφ in its second order formulation, though these
terms appear in the fermionic potential only. It is em-
phasized that this behavior does not influence any of
the mathematical steps used to eliminate the auxiliary
fields. On the contrary, as the elimination procedure
does not depend on the details of the Poisson ten-
sor [28,30], the replacement (89) can be made directly
in the second order formulation, if Xa is regarded as
an abbreviation for (83).
It may be important to point out that a rescaling of
the dilatino according to χα → √Cχα does not remove
the inverse powers of C. Indeed, to keep local Lorentz
invariance and local supersymmetry in (17), (18) and
(20) ψ, Xa and ea must be rescaled as well. But then
inverse powers of C re-emerge in expressions involving
u, u′ and u′′, esp. in the bosonic potential.

To summarize it was found that ungauged versions of
supergravity can be obtained straightforwardly from the
(twisted-)chiral versions by decoupling the scalar field π,
the partner of the U(1) gauge field B. Nevertheless, sym-
metry principles from the gPSM formulation are not as
restrictive in this case as in N = (1, 1) supergravity and
consequently a large number of globally different version
of ungauged supergravity were found. Furthermore, lack-
ing a suitable x-space formulation including spinor terms
of the action of [11], we do not have any action from su-
perspace at hand that such a result could be compared
with.

8 Outlook and conclusions

The present paper shows that N = (2, 2) dilaton super-
gravity can be formulated in terms of a graded Poisson-
Sigma model. The strategy of the construction was mo-
tivated by our previous works [29, 30] on N = (1, 1) su-
pergravity: first we solved the model for a very special
case, general theories were found by means of conformal
transformations, which represent a class of target-space
diffeomorphisms in the gPSM. In this way we obtained
the explicit Lagrangians for minimally gauged chiral dila-
ton supergravity. The twisted-chiral version is obtained
by mirror symmetry [11], which allows an interpretation
as a target-space diffeomorphism as well. Finally it has
been outlined how the gPSM result, which represents a

first-order formulation of supergravity with non-vanishing
bosonic torsion, can be transformed into a second-order
formulation. The latter can be compared with earlier
works [1, 2, 10] on (dilaton) supergravity in superspace.
The equivalence of the bosonic part of the two dilaton su-
pergravity models, namely the one of [10] and our result,
is obvious, but in contrast to [10] the gPSM framework
allows a compact, but explicit derivation of all spinorial
terms as well. In addition the two conserved quantities
(Casimir functions) of the theory have been derived ex-
plicitly: one can be chosen as the supersymmetrized ver-
sion of the standard Casimir function of dilaton gravity,
coinciding with the ADM mass where such a notion makes
sense. The second one represents the charge of the addi-
tional U(1) gauge symmetry. As long as the topological
character of the theory is not destroyed by the coupling
of matter fields, these two quantities essentially describe
the complete physical content of the theory.

The result obtained so far motivates numerous applica-
tions and generalizations. The similarity to the N = (1, 1)
case [28, 30, 32–34] suggests that the advantages of the
gPSM framework again enable an exact treatment of the
classical theory. This allows the determination of the com-
plete classical solution of the model [37] including all non-
trivial fermion contributions. Propagating degrees of free-
dom may be added by coupling matter fields (cf. [32]).
The superspace formulation is certainly simpler to de-
rive invariant Lagrangians, which then can be adjusted
to obtain the relevant expression in the gPSM frame-
work. Beside the classical considerations, it must be pos-
sible to quantize pure N = (2, 2) dilaton supergravity too
in a non-perturbatively exact way when formulated as a
gPSM. Matter interactions still can be treated perturba-
tively (cf. [33,34] for theN = (1, 1) case). As forN = (1, 1)
a classification of all BPS states should be possible.

A yet different aspect is the deformation of N = (2, 2)
dilaton supergravity to models exhibiting only N = (1, 1)
invariance. In the limit where the N = (2, 2) invari-
ance is recovered solitonic states may appear. Though it
is not straightforward to realize kink solutions with the
dilaton alone [38, 39] extensions within supergravity are
possible [40]. However, the situation could change with
N = (2, 2) supergravity as the field content encompasses
an additional scalar field.
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Appendix A: Notations and conventions

The conventions are identical to [28,35], where additional
explanations can be found.

Indices chosen from the Latin alphabet are generic (up-
per case) or (lower case) refer to commuting objects, Greek
indices are anti-commuting ones. Holonomic coordinates
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are labeled by M , N , O etc., anholonomic ones by A, B, C
etc., whereas I, J , K etc. are general indices of the gPSM:

XI = (Xφ, Xπ, Xa, Xα, X ᾱ) = (φ, π,Xa, χα, χ̄α) (A.1)

AI = (Aφ, Aπ, Aa, Aα, Aᾱ) = (ω,B, ea, ψα, ψ̄α) (A.2)

The summation convention is always NW → SE, e.g.
for a fermion χ: χ2 = χαχα. Our conventions are arranged
in such a way that almost every bosonic expression is
transformed trivially to the graded case when using this
summation convention and replacing commuting indices
by general ones. This is possible together with exterior
derivatives acting from the right, only. Thus the graded
Leibniz rule is given by

d (AB) = AdB + (−1)B (dA)B . (A.3)

In terms of anholonomic indices the metric and the
symplectic 2× 2 tensor are defined as

ηab =

(
1 0
0 −1

)
, (A.4)

εab = −εab =

(
0 1
−1 0

)
, εαβ = εαβ =

(
0 1
−1 0

)
.

(A.5)

The metric in terms of holonomic indices is obtained by
gmn = eb

ne
a
mηab and for the determinant the standard ex-

pression e = det ea
m =

√−det gmn is used. The volume
form reads ε = 1

2ε
abeb ∧ ea; by definition ∗ε = 1.

The γ-matrices are used in a chiral representation:

γ0
α

β
=

(
0 1
1 0

)
γ1

α
β

=

(
0 1
−1 0

)
(A.6)

γ∗α
β = (γ1γ0)α

β
=

(
1 0
0 −1

)
(A.7)

Covariant derivatives of anholonomic indices with re-
spect to the geometric variables ea = dxmeam and ψα =
dxmψαm include the two-dimensional spin-connection one
form ωab = ωεab. When acting on lower indices the explicit
expressions read ( 1

2γ∗ is the generator of Lorentz transfor-
mations in spinor space):

(De)a = dea + ωεa
beb (Dψ)α = dψα − 1

2
ωγ∗α

βψβ

(A.8)

Dirac conjugation is defined as χ̄α = χ†γ0. Written in
components of the chiral representation

χα = (χ+, χ−) , χα =

(
χ+

χ−

)
(A.9)

the relation between upper and lower indices becomes
χ+ = χ−, χ− = −χ+. Dirac conjugation follows as

χ̄− = χ∗
−, χ̄+ = −χ∗

+, i.e. for Majorana spinors χ− is
real while χ+ is imaginary.

For two gauge-covariant Dirac spinors χα and λα the
combinations

χλ , χγ∗λ , χ̄γaλ (A.10)

and their hermitian conjugates are gauge invariant for chi-
ral gaugings, while

χ̄λ , χ̄γ∗λ , χ̄γaλ (A.11)

are invariant for twisted-chiral gaugings. Note that in the
latter case the gravitino ψα transforms under gauge trans-
formations as χ̄α. Thus in (A.11) the bilinear invariants
of a gravitino and a dilatino are obtained by substituting
λ→ ψ̄.
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